3.365 \(\int \frac {(f+g x^{3 n})^2 \log (c (d+e x^n)^p)}{x} \, dx\)

Optimal. Leaf size=327 \[ \frac {f^2 \log \left (-\frac {e x^n}{d}\right ) \log \left (c \left (d+e x^n\right )^p\right )}{n}+\frac {2 f g x^{3 n} \log \left (c \left (d+e x^n\right )^p\right )}{3 n}+\frac {g^2 x^{6 n} \log \left (c \left (d+e x^n\right )^p\right )}{6 n}-\frac {d^6 g^2 p \log \left (d+e x^n\right )}{6 e^6 n}+\frac {d^5 g^2 p x^n}{6 e^5 n}-\frac {d^4 g^2 p x^{2 n}}{12 e^4 n}+\frac {2 d^3 f g p \log \left (d+e x^n\right )}{3 e^3 n}+\frac {d^3 g^2 p x^{3 n}}{18 e^3 n}-\frac {2 d^2 f g p x^n}{3 e^2 n}-\frac {d^2 g^2 p x^{4 n}}{24 e^2 n}+\frac {f^2 p \text {Li}_2\left (\frac {e x^n}{d}+1\right )}{n}+\frac {d f g p x^{2 n}}{3 e n}+\frac {d g^2 p x^{5 n}}{30 e n}-\frac {2 f g p x^{3 n}}{9 n}-\frac {g^2 p x^{6 n}}{36 n} \]

[Out]

-2/3*d^2*f*g*p*x^n/e^2/n+1/6*d^5*g^2*p*x^n/e^5/n+1/3*d*f*g*p*x^(2*n)/e/n-1/12*d^4*g^2*p*x^(2*n)/e^4/n-2/9*f*g*
p*x^(3*n)/n+1/18*d^3*g^2*p*x^(3*n)/e^3/n-1/24*d^2*g^2*p*x^(4*n)/e^2/n+1/30*d*g^2*p*x^(5*n)/e/n-1/36*g^2*p*x^(6
*n)/n+2/3*d^3*f*g*p*ln(d+e*x^n)/e^3/n-1/6*d^6*g^2*p*ln(d+e*x^n)/e^6/n+2/3*f*g*x^(3*n)*ln(c*(d+e*x^n)^p)/n+1/6*
g^2*x^(6*n)*ln(c*(d+e*x^n)^p)/n+f^2*ln(-e*x^n/d)*ln(c*(d+e*x^n)^p)/n+f^2*p*polylog(2,1+e*x^n/d)/n

________________________________________________________________________________________

Rubi [A]  time = 0.33, antiderivative size = 327, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 7, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.259, Rules used = {2475, 266, 43, 2416, 2394, 2315, 2395} \[ \frac {f^2 p \text {PolyLog}\left (2,\frac {e x^n}{d}+1\right )}{n}+\frac {f^2 \log \left (-\frac {e x^n}{d}\right ) \log \left (c \left (d+e x^n\right )^p\right )}{n}+\frac {2 f g x^{3 n} \log \left (c \left (d+e x^n\right )^p\right )}{3 n}+\frac {g^2 x^{6 n} \log \left (c \left (d+e x^n\right )^p\right )}{6 n}-\frac {2 d^2 f g p x^n}{3 e^2 n}+\frac {2 d^3 f g p \log \left (d+e x^n\right )}{3 e^3 n}+\frac {d^5 g^2 p x^n}{6 e^5 n}-\frac {d^4 g^2 p x^{2 n}}{12 e^4 n}+\frac {d^3 g^2 p x^{3 n}}{18 e^3 n}-\frac {d^2 g^2 p x^{4 n}}{24 e^2 n}-\frac {d^6 g^2 p \log \left (d+e x^n\right )}{6 e^6 n}+\frac {d f g p x^{2 n}}{3 e n}+\frac {d g^2 p x^{5 n}}{30 e n}-\frac {2 f g p x^{3 n}}{9 n}-\frac {g^2 p x^{6 n}}{36 n} \]

Antiderivative was successfully verified.

[In]

Int[((f + g*x^(3*n))^2*Log[c*(d + e*x^n)^p])/x,x]

[Out]

(-2*d^2*f*g*p*x^n)/(3*e^2*n) + (d^5*g^2*p*x^n)/(6*e^5*n) + (d*f*g*p*x^(2*n))/(3*e*n) - (d^4*g^2*p*x^(2*n))/(12
*e^4*n) - (2*f*g*p*x^(3*n))/(9*n) + (d^3*g^2*p*x^(3*n))/(18*e^3*n) - (d^2*g^2*p*x^(4*n))/(24*e^2*n) + (d*g^2*p
*x^(5*n))/(30*e*n) - (g^2*p*x^(6*n))/(36*n) + (2*d^3*f*g*p*Log[d + e*x^n])/(3*e^3*n) - (d^6*g^2*p*Log[d + e*x^
n])/(6*e^6*n) + (2*f*g*x^(3*n)*Log[c*(d + e*x^n)^p])/(3*n) + (g^2*x^(6*n)*Log[c*(d + e*x^n)^p])/(6*n) + (f^2*L
og[-((e*x^n)/d)]*Log[c*(d + e*x^n)^p])/n + (f^2*p*PolyLog[2, 1 + (e*x^n)/d])/n

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 2315

Int[Log[(c_.)*(x_)]/((d_) + (e_.)*(x_)), x_Symbol] :> -Simp[PolyLog[2, 1 - c*x]/e, x] /; FreeQ[{c, d, e}, x] &
& EqQ[e + c*d, 0]

Rule 2394

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))/((f_.) + (g_.)*(x_)), x_Symbol] :> Simp[(Log[(e*(f +
g*x))/(e*f - d*g)]*(a + b*Log[c*(d + e*x)^n]))/g, x] - Dist[(b*e*n)/g, Int[Log[(e*(f + g*x))/(e*f - d*g)]/(d +
 e*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && NeQ[e*f - d*g, 0]

Rule 2395

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))*((f_.) + (g_.)*(x_))^(q_.), x_Symbol] :> Simp[((f + g
*x)^(q + 1)*(a + b*Log[c*(d + e*x)^n]))/(g*(q + 1)), x] - Dist[(b*e*n)/(g*(q + 1)), Int[(f + g*x)^(q + 1)/(d +
 e*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, n, q}, x] && NeQ[e*f - d*g, 0] && NeQ[q, -1]

Rule 2416

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((h_.)*(x_))^(m_.)*((f_) + (g_.)*(x_)^(r_.))^(q
_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*Log[c*(d + e*x)^n])^p, (h*x)^m*(f + g*x^r)^q, x], x] /; FreeQ[{a,
 b, c, d, e, f, g, h, m, n, p, q, r}, x] && IntegerQ[m] && IntegerQ[q]

Rule 2475

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_.)*(x_)^(m_.)*((f_) + (g_.)*(x_)^(s_))^(r_.),
 x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(f + g*x^(s/n))^r*(a + b*Log[c*(d + e*x)^p])^q,
x], x, x^n], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p, q, r, s}, x] && IntegerQ[r] && IntegerQ[s/n] && Intege
rQ[Simplify[(m + 1)/n]] && (GtQ[(m + 1)/n, 0] || IGtQ[q, 0])

Rubi steps

\begin {align*} \int \frac {\left (f+g x^{3 n}\right )^2 \log \left (c \left (d+e x^n\right )^p\right )}{x} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {\left (f+g x^3\right )^2 \log \left (c (d+e x)^p\right )}{x} \, dx,x,x^n\right )}{n}\\ &=\frac {\operatorname {Subst}\left (\int \left (\frac {f^2 \log \left (c (d+e x)^p\right )}{x}+2 f g x^2 \log \left (c (d+e x)^p\right )+g^2 x^5 \log \left (c (d+e x)^p\right )\right ) \, dx,x,x^n\right )}{n}\\ &=\frac {f^2 \operatorname {Subst}\left (\int \frac {\log \left (c (d+e x)^p\right )}{x} \, dx,x,x^n\right )}{n}+\frac {(2 f g) \operatorname {Subst}\left (\int x^2 \log \left (c (d+e x)^p\right ) \, dx,x,x^n\right )}{n}+\frac {g^2 \operatorname {Subst}\left (\int x^5 \log \left (c (d+e x)^p\right ) \, dx,x,x^n\right )}{n}\\ &=\frac {2 f g x^{3 n} \log \left (c \left (d+e x^n\right )^p\right )}{3 n}+\frac {g^2 x^{6 n} \log \left (c \left (d+e x^n\right )^p\right )}{6 n}+\frac {f^2 \log \left (-\frac {e x^n}{d}\right ) \log \left (c \left (d+e x^n\right )^p\right )}{n}-\frac {\left (e f^2 p\right ) \operatorname {Subst}\left (\int \frac {\log \left (-\frac {e x}{d}\right )}{d+e x} \, dx,x,x^n\right )}{n}-\frac {(2 e f g p) \operatorname {Subst}\left (\int \frac {x^3}{d+e x} \, dx,x,x^n\right )}{3 n}-\frac {\left (e g^2 p\right ) \operatorname {Subst}\left (\int \frac {x^6}{d+e x} \, dx,x,x^n\right )}{6 n}\\ &=\frac {2 f g x^{3 n} \log \left (c \left (d+e x^n\right )^p\right )}{3 n}+\frac {g^2 x^{6 n} \log \left (c \left (d+e x^n\right )^p\right )}{6 n}+\frac {f^2 \log \left (-\frac {e x^n}{d}\right ) \log \left (c \left (d+e x^n\right )^p\right )}{n}+\frac {f^2 p \text {Li}_2\left (1+\frac {e x^n}{d}\right )}{n}-\frac {(2 e f g p) \operatorname {Subst}\left (\int \left (\frac {d^2}{e^3}-\frac {d x}{e^2}+\frac {x^2}{e}-\frac {d^3}{e^3 (d+e x)}\right ) \, dx,x,x^n\right )}{3 n}-\frac {\left (e g^2 p\right ) \operatorname {Subst}\left (\int \left (-\frac {d^5}{e^6}+\frac {d^4 x}{e^5}-\frac {d^3 x^2}{e^4}+\frac {d^2 x^3}{e^3}-\frac {d x^4}{e^2}+\frac {x^5}{e}+\frac {d^6}{e^6 (d+e x)}\right ) \, dx,x,x^n\right )}{6 n}\\ &=-\frac {2 d^2 f g p x^n}{3 e^2 n}+\frac {d^5 g^2 p x^n}{6 e^5 n}+\frac {d f g p x^{2 n}}{3 e n}-\frac {d^4 g^2 p x^{2 n}}{12 e^4 n}-\frac {2 f g p x^{3 n}}{9 n}+\frac {d^3 g^2 p x^{3 n}}{18 e^3 n}-\frac {d^2 g^2 p x^{4 n}}{24 e^2 n}+\frac {d g^2 p x^{5 n}}{30 e n}-\frac {g^2 p x^{6 n}}{36 n}+\frac {2 d^3 f g p \log \left (d+e x^n\right )}{3 e^3 n}-\frac {d^6 g^2 p \log \left (d+e x^n\right )}{6 e^6 n}+\frac {2 f g x^{3 n} \log \left (c \left (d+e x^n\right )^p\right )}{3 n}+\frac {g^2 x^{6 n} \log \left (c \left (d+e x^n\right )^p\right )}{6 n}+\frac {f^2 \log \left (-\frac {e x^n}{d}\right ) \log \left (c \left (d+e x^n\right )^p\right )}{n}+\frac {f^2 p \text {Li}_2\left (1+\frac {e x^n}{d}\right )}{n}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.31, size = 209, normalized size = 0.64 \[ \frac {60 e^6 \log \left (c \left (d+e x^n\right )^p\right ) \left (6 f^2 \log \left (-\frac {e x^n}{d}\right )+g x^{3 n} \left (4 f+g x^{3 n}\right )\right )-60 d^3 g p \left (d^3 g-4 e^3 f\right ) \log \left (d+e x^n\right )-e g p x^n \left (-60 d^5 g+30 d^4 e g x^n-20 d^3 e^2 g x^{2 n}+15 d^2 e^3 \left (16 f+g x^{3 n}\right )-12 d e^4 x^n \left (10 f+g x^{3 n}\right )+10 e^5 x^{2 n} \left (8 f+g x^{3 n}\right )\right )+360 e^6 f^2 p \text {Li}_2\left (\frac {e x^n}{d}+1\right )}{360 e^6 n} \]

Antiderivative was successfully verified.

[In]

Integrate[((f + g*x^(3*n))^2*Log[c*(d + e*x^n)^p])/x,x]

[Out]

(-(e*g*p*x^n*(-60*d^5*g + 30*d^4*e*g*x^n - 20*d^3*e^2*g*x^(2*n) + 10*e^5*x^(2*n)*(8*f + g*x^(3*n)) - 12*d*e^4*
x^n*(10*f + g*x^(3*n)) + 15*d^2*e^3*(16*f + g*x^(3*n)))) - 60*d^3*g*(-4*e^3*f + d^3*g)*p*Log[d + e*x^n] + 60*e
^6*(g*x^(3*n)*(4*f + g*x^(3*n)) + 6*f^2*Log[-((e*x^n)/d)])*Log[c*(d + e*x^n)^p] + 360*e^6*f^2*p*PolyLog[2, 1 +
 (e*x^n)/d])/(360*e^6*n)

________________________________________________________________________________________

fricas [A]  time = 0.47, size = 291, normalized size = 0.89 \[ -\frac {360 \, e^{6} f^{2} n p \log \relax (x) \log \left (\frac {e x^{n} + d}{d}\right ) - 360 \, e^{6} f^{2} n \log \relax (c) \log \relax (x) - 12 \, d e^{5} g^{2} p x^{5 \, n} + 15 \, d^{2} e^{4} g^{2} p x^{4 \, n} + 360 \, e^{6} f^{2} p {\rm Li}_2\left (-\frac {e x^{n} + d}{d} + 1\right ) - 30 \, {\left (4 \, d e^{5} f g - d^{4} e^{2} g^{2}\right )} p x^{2 \, n} + 60 \, {\left (4 \, d^{2} e^{4} f g - d^{5} e g^{2}\right )} p x^{n} + 10 \, {\left (e^{6} g^{2} p - 6 \, e^{6} g^{2} \log \relax (c)\right )} x^{6 \, n} - 20 \, {\left (12 \, e^{6} f g \log \relax (c) - {\left (4 \, e^{6} f g - d^{3} e^{3} g^{2}\right )} p\right )} x^{3 \, n} - 60 \, {\left (6 \, e^{6} f^{2} n p \log \relax (x) + e^{6} g^{2} p x^{6 \, n} + 4 \, e^{6} f g p x^{3 \, n} + {\left (4 \, d^{3} e^{3} f g - d^{6} g^{2}\right )} p\right )} \log \left (e x^{n} + d\right )}{360 \, e^{6} n} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f+g*x^(3*n))^2*log(c*(d+e*x^n)^p)/x,x, algorithm="fricas")

[Out]

-1/360*(360*e^6*f^2*n*p*log(x)*log((e*x^n + d)/d) - 360*e^6*f^2*n*log(c)*log(x) - 12*d*e^5*g^2*p*x^(5*n) + 15*
d^2*e^4*g^2*p*x^(4*n) + 360*e^6*f^2*p*dilog(-(e*x^n + d)/d + 1) - 30*(4*d*e^5*f*g - d^4*e^2*g^2)*p*x^(2*n) + 6
0*(4*d^2*e^4*f*g - d^5*e*g^2)*p*x^n + 10*(e^6*g^2*p - 6*e^6*g^2*log(c))*x^(6*n) - 20*(12*e^6*f*g*log(c) - (4*e
^6*f*g - d^3*e^3*g^2)*p)*x^(3*n) - 60*(6*e^6*f^2*n*p*log(x) + e^6*g^2*p*x^(6*n) + 4*e^6*f*g*p*x^(3*n) + (4*d^3
*e^3*f*g - d^6*g^2)*p)*log(e*x^n + d))/(e^6*n)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (g x^{3 \, n} + f\right )}^{2} \log \left ({\left (e x^{n} + d\right )}^{p} c\right )}{x}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f+g*x^(3*n))^2*log(c*(d+e*x^n)^p)/x,x, algorithm="giac")

[Out]

integrate((g*x^(3*n) + f)^2*log((e*x^n + d)^p*c)/x, x)

________________________________________________________________________________________

maple [C]  time = 4.04, size = 795, normalized size = 2.43 \[ \frac {\left (6 f^{2} n \ln \relax (x )+4 f g \,x^{3 n}+g^{2} x^{6 n}\right ) \ln \left (\left (e \,x^{n}+d \right )^{p}\right )}{6 n}-\frac {g^{2} p \,x^{6 n}}{36 n}+\frac {g^{2} x^{6 n} \ln \relax (c )}{6 n}-\frac {f^{2} p \dilog \left (\frac {e \,x^{n}+d}{d}\right )}{n}+\frac {f^{2} \ln \relax (c ) \ln \left (x^{n}\right )}{n}+\frac {d^{5} g^{2} p \,x^{n}}{6 e^{5} n}-\frac {d^{4} g^{2} p \,x^{2 n}}{12 e^{4} n}+\frac {d^{3} g^{2} p \,x^{3 n}}{18 e^{3} n}-f^{2} p \ln \relax (x ) \ln \left (\frac {e \,x^{n}+d}{d}\right )-\frac {2 d^{2} f g p \,x^{n}}{3 e^{2} n}+\frac {2 d^{3} f g p \ln \left (e \,x^{n}+d \right )}{3 e^{3} n}-\frac {2 f g p \,x^{3 n}}{9 n}-\frac {d^{6} g^{2} p \ln \left (e \,x^{n}+d \right )}{6 e^{6} n}+\frac {d f g p \,x^{2 n}}{3 e n}+\frac {2 f g \,x^{3 n} \ln \relax (c )}{3 n}-\frac {i \pi f g \,x^{3 n} \mathrm {csgn}\left (i c \right ) \mathrm {csgn}\left (i \left (e \,x^{n}+d \right )^{p}\right ) \mathrm {csgn}\left (i c \left (e \,x^{n}+d \right )^{p}\right )}{3 n}-\frac {i \pi \,f^{2} \mathrm {csgn}\left (i c \right ) \mathrm {csgn}\left (i \left (e \,x^{n}+d \right )^{p}\right ) \mathrm {csgn}\left (i c \left (e \,x^{n}+d \right )^{p}\right ) \ln \left (x^{n}\right )}{2 n}+\frac {i \pi f g \,x^{3 n} \mathrm {csgn}\left (i c \right ) \mathrm {csgn}\left (i c \left (e \,x^{n}+d \right )^{p}\right )^{2}}{3 n}+\frac {i \pi f g \,x^{3 n} \mathrm {csgn}\left (i \left (e \,x^{n}+d \right )^{p}\right ) \mathrm {csgn}\left (i c \left (e \,x^{n}+d \right )^{p}\right )^{2}}{3 n}-\frac {i \pi \,g^{2} x^{6 n} \mathrm {csgn}\left (i c \right ) \mathrm {csgn}\left (i \left (e \,x^{n}+d \right )^{p}\right ) \mathrm {csgn}\left (i c \left (e \,x^{n}+d \right )^{p}\right )}{12 n}+\frac {i \pi \,g^{2} x^{6 n} \mathrm {csgn}\left (i c \right ) \mathrm {csgn}\left (i c \left (e \,x^{n}+d \right )^{p}\right )^{2}}{12 n}-\frac {d^{2} g^{2} p \,x^{4 n}}{24 e^{2} n}+\frac {d \,g^{2} p \,x^{5 n}}{30 e n}-\frac {i \pi \,g^{2} x^{6 n} \mathrm {csgn}\left (i c \left (e \,x^{n}+d \right )^{p}\right )^{3}}{12 n}-\frac {i \pi \,f^{2} \mathrm {csgn}\left (i c \left (e \,x^{n}+d \right )^{p}\right )^{3} \ln \left (x^{n}\right )}{2 n}+\frac {i \pi \,f^{2} \mathrm {csgn}\left (i c \right ) \mathrm {csgn}\left (i c \left (e \,x^{n}+d \right )^{p}\right )^{2} \ln \left (x^{n}\right )}{2 n}+\frac {i \pi \,g^{2} x^{6 n} \mathrm {csgn}\left (i \left (e \,x^{n}+d \right )^{p}\right ) \mathrm {csgn}\left (i c \left (e \,x^{n}+d \right )^{p}\right )^{2}}{12 n}+\frac {i \pi \,f^{2} \mathrm {csgn}\left (i \left (e \,x^{n}+d \right )^{p}\right ) \mathrm {csgn}\left (i c \left (e \,x^{n}+d \right )^{p}\right )^{2} \ln \left (x^{n}\right )}{2 n}-\frac {i \pi f g \,x^{3 n} \mathrm {csgn}\left (i c \left (e \,x^{n}+d \right )^{p}\right )^{3}}{3 n} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((f+g*x^(3*n))^2*ln(c*(e*x^n+d)^p)/x,x)

[Out]

1/6*(g^2*(x^n)^6+4*f*g*(x^n)^3+6*f^2*ln(x)*n)/n*ln((e*x^n+d)^p)+1/n*ln(c)*f^2*ln(x^n)+1/6*d^5*g^2*p*x^n/e^5/n-
p/n*f^2*dilog((e*x^n+d)/d)-p*f^2*ln(x)*ln((e*x^n+d)/d)+1/6/n*ln(c)*(x^n)^6*g^2-1/36*p/n*g^2*(x^n)^6-1/3*I/n*Pi
*csgn(I*(e*x^n+d)^p)*csgn(I*c*(e*x^n+d)^p)*csgn(I*c)*(x^n)^3*f*g+1/2*I/n*Pi*csgn(I*(e*x^n+d)^p)*csgn(I*c*(e*x^
n+d)^p)^2*f^2*ln(x^n)+1/12*I/n*Pi*csgn(I*c*(e*x^n+d)^p)^2*csgn(I*c)*(x^n)^6*g^2-2/3*d^2*f*g*p*x^n/e^2/n+2/3*d^
3*f*g*p*ln(e*x^n+d)/e^3/n-1/3*I/n*Pi*csgn(I*c*(e*x^n+d)^p)^3*(x^n)^3*f*g+1/12*I/n*Pi*csgn(I*(e*x^n+d)^p)*csgn(
I*c*(e*x^n+d)^p)^2*(x^n)^6*g^2-1/6*d^6*g^2*p*ln(e*x^n+d)/e^6/n-2/9*p/n*f*g*(x^n)^3-1/2*I/n*Pi*csgn(I*(e*x^n+d)
^p)*csgn(I*c*(e*x^n+d)^p)*csgn(I*c)*f^2*ln(x^n)-1/12*I/n*Pi*csgn(I*(e*x^n+d)^p)*csgn(I*c*(e*x^n+d)^p)*csgn(I*c
)*(x^n)^6*g^2+1/3*I/n*Pi*csgn(I*(e*x^n+d)^p)*csgn(I*c*(e*x^n+d)^p)^2*(x^n)^3*f*g-1/2*I/n*Pi*csgn(I*c*(e*x^n+d)
^p)^3*f^2*ln(x^n)+1/3*I/n*Pi*csgn(I*c*(e*x^n+d)^p)^2*csgn(I*c)*(x^n)^3*f*g+1/2*I/n*Pi*csgn(I*c*(e*x^n+d)^p)^2*
csgn(I*c)*f^2*ln(x^n)+2/3/n*ln(c)*(x^n)^3*f*g+1/30*p/e/n*g^2*(x^n)^5*d-1/24*p/e^2/n*g^2*d^2*(x^n)^4+1/18*p/e^3
/n*g^2*d^3*(x^n)^3-1/12*p/e^4/n*g^2*(x^n)^2*d^4-1/12*I/n*Pi*csgn(I*c*(e*x^n+d)^p)^3*(x^n)^6*g^2+1/3*p/e/n*f*g*
(x^n)^2*d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ -\frac {180 \, e^{6} f^{2} n^{2} p \log \relax (x)^{2} - 12 \, d e^{5} g^{2} p x^{5 \, n} + 15 \, d^{2} e^{4} g^{2} p x^{4 \, n} + 10 \, {\left (e^{6} g^{2} p - 6 \, e^{6} g^{2} \log \relax (c)\right )} x^{6 \, n} + 20 \, {\left (4 \, e^{6} f g p - d^{3} e^{3} g^{2} p - 12 \, e^{6} f g \log \relax (c)\right )} x^{3 \, n} - 30 \, {\left (4 \, d e^{5} f g p - d^{4} e^{2} g^{2} p\right )} x^{2 \, n} + 60 \, {\left (4 \, d^{2} e^{4} f g p - d^{5} e g^{2} p\right )} x^{n} - 60 \, {\left (6 \, e^{6} f^{2} n \log \relax (x) + e^{6} g^{2} x^{6 \, n} + 4 \, e^{6} f g x^{3 \, n}\right )} \log \left ({\left (e x^{n} + d\right )}^{p}\right ) - 60 \, {\left (4 \, d^{3} e^{3} f g n p - d^{6} g^{2} n p + 6 \, e^{6} f^{2} n \log \relax (c)\right )} \log \relax (x)}{360 \, e^{6} n} + \int \frac {6 \, d e^{6} f^{2} n p \log \relax (x) - 4 \, d^{4} e^{3} f g p + d^{7} g^{2} p}{6 \, {\left (e^{7} x x^{n} + d e^{6} x\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f+g*x^(3*n))^2*log(c*(d+e*x^n)^p)/x,x, algorithm="maxima")

[Out]

-1/360*(180*e^6*f^2*n^2*p*log(x)^2 - 12*d*e^5*g^2*p*x^(5*n) + 15*d^2*e^4*g^2*p*x^(4*n) + 10*(e^6*g^2*p - 6*e^6
*g^2*log(c))*x^(6*n) + 20*(4*e^6*f*g*p - d^3*e^3*g^2*p - 12*e^6*f*g*log(c))*x^(3*n) - 30*(4*d*e^5*f*g*p - d^4*
e^2*g^2*p)*x^(2*n) + 60*(4*d^2*e^4*f*g*p - d^5*e*g^2*p)*x^n - 60*(6*e^6*f^2*n*log(x) + e^6*g^2*x^(6*n) + 4*e^6
*f*g*x^(3*n))*log((e*x^n + d)^p) - 60*(4*d^3*e^3*f*g*n*p - d^6*g^2*n*p + 6*e^6*f^2*n*log(c))*log(x))/(e^6*n) +
 integrate(1/6*(6*d*e^6*f^2*n*p*log(x) - 4*d^4*e^3*f*g*p + d^7*g^2*p)/(e^7*x*x^n + d*e^6*x), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {\ln \left (c\,{\left (d+e\,x^n\right )}^p\right )\,{\left (f+g\,x^{3\,n}\right )}^2}{x} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((log(c*(d + e*x^n)^p)*(f + g*x^(3*n))^2)/x,x)

[Out]

int((log(c*(d + e*x^n)^p)*(f + g*x^(3*n))^2)/x, x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f+g*x**(3*n))**2*ln(c*(d+e*x**n)**p)/x,x)

[Out]

Timed out

________________________________________________________________________________________